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Mild cognitive impairment (MCI) of the amnestic type is considered to be a transitionary stage between
healthy aging and Alzheimer’s disease (AD). Previous studies have demonstrated that intrinsic functional
connectivity of the default network (DN) is altered in normal aging and AD and impacts both within- and
between-network connectivity. Although changes within the DN have been reported in MCI, it remains
uncertain how interactions with other large-scale brain networks are altered in this prodromal stage of
AD. We investigated within- and between-network connectivity in healthy older adults (HOAs) and older
adults with MCI across 3 canonical brain networks: DN, dorsal attention network, and frontoparietal
control network. We also assessed how patterns of functional connectivity among the 3 networks pre-
dicted cognitive status and age using multivariate partial least squares. A total of 91 MCI and 71 HOA
resting-state scans were analyzed from the Alzheimer’s Disease Neuroimaging Initiative. There were 3
key findings. First, a circumscribed pattern of greater between-network and interhemispheric connec-
tivity was associated with higher cognitive status in HOAs. Second, for individuals with MCI, cognitive
status was positively associated with a more distributed, less-differentiated pattern of intrinsic functional
connectivity across the 3 networks. Finally, greater within-network functional connectivity was posi-
tively associated with cognitive status for HOAs irrespective of age; however, this compensation-like
effect diminished with increasing age for participants with MCI. Although reliable differences between
healthy aging and MCI in the intrinsic network architecture of the brain are apparent, these differences
emerge as shifting associations between network interactivity, cognitive functioning, and age.

� 2018 Elsevier Inc. All rights reserved.
Intrinsic functional connectivity within the brain, measured at
rest, offers a promising avenue toward identifying early brain
changes during Alzheimer’s disease (AD) progression, potentially
expanding the window for intervention and treatment planning
(Fox and Greicius, 2010; Franzmeier et al., 2017). An important step
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in testing this prediction is differentiating normal from atypical
network organization at the earliest disease stages. Reductions in
functional connectivity between AD and healthy aging are
commonly reported (e.g., see Brier et al., 2012; Damoiseaux et al.,
2012; Sanz-Arigita et al., 2010; Sorg et al., 2007; Wang et al.,
2007; see Damoiseaux, 2017; Dennis and Thompson, 2014; Grady,
2012; Teipel et al., 2016 for reviews). However, identifying brain
differences in prodromal disease stages such as mild cognitive
impairment (MCI) has proven more challenging, with myriad and
often conflicting reports of both increases and decreases in network
connectivity (e.g., Damoiseaux et al., 2012; Jones et al., 2016; Wang
et al., 2015).

Although global changes in network connectivity have been re-
ported in both MCI and AD (Sanz-Arigita et al., 2010), much of the
research examining cortical brain differences between typical aging
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and neurodegenerative disease has targeted the default network
(DN) of the brain. The DN is an assembly of functionally connected
regions, including anterior (medial prefrontal cortex) and posterior
(posterior cingulate) hubs along themidline, as well as subnetworks
including lateral and medial temporal lobe structures (Andrews-
Hanna et al., 2014). Functionally, the DN is associated with inter-
nally directed cognitive processes, including memory functions,
making this network anearly focusof research to identify biomarkers
of cognitive decline inMCI and AD (Damoiseaux, 2017). Longitudinal
analysis of the DN suggests that within-DN functional connectivity
follows an inverted U-shaped curve and these changes predict
episodicmemory and processing speed (but not workingmemory or
executive functions). Early in the aging process (<66 years), func-
tional connectivity increases before leveling off (66e74 years) and
finally sharply declines (>74 years) (Staffaroni et al., 2018).

Early studies of neurodegenerative changes within the DN
implicated the hippocampus and entorhinal cortex and reduced
connectivity between these medial temporal lobe structures and
other DN regions, including the posterior cingulate hub, in persons
at risk for AD (Sorg et al., 2007). In clinical stages of the disease,
these structural brain changes in medial temporal subregions
project to the cortical mantle, following a spatial topology that
closely overlaps the DN (Buckner, 2004; Buckner et al., 2005;
Damoiseaux, 2017; Hafkemeijer et al., 2012; Khan et al., 2014;
Spreng and Turner, 2013). DN hub regions also show greater sus-
ceptibility to accelerated amyloid accumulation, structural atrophy,
and metabolic changes in AD (Buckner, 2004; Buckner et al., 2005),
and the network may serve as a vector for transmission of AD-
related neuropathies across the cortex (Buckner et al., 2008;
Buckner et al., 2005; Seeley et al., 2009).

There is recent evidence that these DN changes may initiate a
cascade of network failures resulting in the eventual conversion
from normal aging to AD (Jones et al., 2016). This suggests that
network changes within the DN provide only a partial account of
altered functional connectivity changes in the disease. Within-
network changes have been shown to co-occur with altered con-
nectivity between the DN and other large-scale brain networks both
in typical aging (Chan et al., 2014) and AD (Brier et al., 2012). Criti-
cally, between-network changes may not follow a linear pattern of
decline but may proceed in discrete stages, first involving increased
connectivity between DN and frontal association cortices, followed
by declining within- and between-network connectivity later in the
disease course (Damoiseaux, 2017; Jones et al., 2016). Thus, changing
patterns of within- and between-DN connectivity may serve as a
better marker of early brain changes in MCI and AD, and there is
initial evidence for this idea (Wang et al., 2015; Zhan et al., 2016).

Three canonical large-scale networks, the DN, dorsal attention
network (DAN), and the frontal parietal control network (FPCN),
have been identified as stable features of the functional archi-
tecture of the brain during task and rest (Spreng et al., 2013). As
with the DN, functional connectivity within the DAN and FPCN
declines in typical aging (Andrews-Hanna et al., 2007; Avelar-
Pereira et al., 2017; Grady et al., 2016; Li et al., 2012; Spreng
et al., 2016; Tomasi and Volkow, 2012; Turner and Spreng, 2015)
and changes are accelerated in AD (Brier et al., 2012; Damoiseaux
et al., 2012; Franzmeier et al., 2017; Wang et al., 2015; Zhan et al.,
2016). These within-network declines co-occur with changes in
between-network connectivity, and this shifting network archi-
tecture may be compensatory in MCI (Wang et al., 2015; Zhan
et al., 2016). Failure of this system may mark the transition to
the clinical phase of the disease. Reduced intranetwork connec-
tivity within the DN and DAN has recently been linked to
increased between-network connections with the FPCN, and
these changes were associated with better cognitive performance
in normal aging (Grady et al., 2016). Whether this compensatory-
like pattern of network dynamics is preserved or disrupted in MCI
remains uncertain.

To investigatewhether neural network organization is preserved
or disrupted in MCI, we measured within- and between-network
differences in the DN, DAN, and FPCN and use a novel approach to
examine how changes in this network architecture are associated
with cognition and age in normal aging and MCI cohorts from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set. There
are 2 specific aims. The first is to contrast the intrinsic functional
connectivity of the DN, FPCN, andDAN in healthy aging compared to
MCI. The second aim is to investigate how this intrinsic architecture
interacts with both cognitive status and age, and how these brain
and behavioral associations may differ between normal aging and
MCI.Wepredict reducedwithin-network functional connectivity for
MCI as compared to normal aging for each of the networks.
Extending the findings of Grady et al. (2016), we further predict that
individuals with MCI will demonstrate greater between-network
connectivity among the DN, DAN, and FPCN. However, the
strength of this between-network coupling inMCIwill be associated
with lower cognitive status, signaling an emerging failure of
compensation-like reorganization in this prodromal stage of AD.

1. Methods

1.1. ADNI database

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD.

1.2. Study sample and search criteria

All available rs-fMRI and associated T1 structural data from the
ADNIGO/ADNI2 phases with a diagnostic status of MCI or normal
(healthy older adult [HOA]) were downloaded on July 18, 2015e22,
2015. Group diagnostic criteria are available publically in the ADNI
procedures manual (see https://adni.loni.usc.edu/wp-content/
uploads/2008/07/adni2-procedures-manual.pdf). Participants are
classified as cognitively normal if there are no current memory
concerns above typical age-related changes and cognition and daily
living is unimpaired. HOA and MCI groups have a MinieMental
Status Examination (MMSE, Folstein et al., 1975) score within the
range of 24e30. A diagnosis of MCI includes a subjective memory
concern accompanied by abnormal performance on the Logical
Memory II subscale from the Wechsler Memory Scale-Revised
(Wechsler, 1945) and a Clinical Dementia Rating of 0.5. MCI par-
ticipants do not meet the criteria for probable AD in terms of
cognitive and daily functioning. As all participants in both HOA and
MCI groups had a reported MMSE score, and the measure assesses
multiple domains of cognition, we selected this as our measure of
cognitive status. Importantly, MMSE was not used as criteria for
MCI diagnosis in the ADNI.

The earliest dated rs-fMRI scan was selected per roster ID (RID)
to assess baseline functional connectivity. The initial search resul-
ted in a total of 102 MCI and 79 HOA images. From this sample, 11
MCI and 8 HOA scans were excluded. Exclusions were based on
having a quality control rating of 4 (rated by the ADNI quality
control team at the Mayo clinic), unusable (1 MCI, 4 HOA), use of a
different rs-fMRI protocol (1MCI), or a repetition time< 3000ms (6
MCI, 1 HOA). In addition, temporal signal-to-noise ratios (tSNRs)
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were calculated per participant and per network region of interest
(ROI) after preprocessing was complete by dividing the temporal
mean image by the standard deviation. A poor tSNR was considered
using a threshold <100 (Jones et al., 2016). Three MCI and 3 HOA
participants had 5 or more ROIs within the DN, DAN, or FPCN (see
below for ROI information) with a tSNR< 100 andwere excluded (5
ROIs being 2.5 standard deviation outside of the sample mean). The
final analysis sample included 91 MCI and 71 HOA images (see
Supplementary Table 1 for RIDs and image IDs).

1.3. Functional MRI data acquisition and preprocessing

ADNI participants were scanned using 3T Philips MRI scanners
and an 8-channel headmatrix coil. rs-fMRI datawere acquired with
eyes open and single-shot gradient echo planar imaging (EPI), with
140 volumes (repetition time ¼ 3000 ms, echo time ¼ 30 ms, flip
angle ¼ 80�, 48 transverse slices, 64 � 64 matrix, and 3.3 mm of
isotropic voxel resolution). Anatomical scans were acquired with a
3-dimensional (3D) MPRAGE sequence using SENSE (repetition
time¼ 6.8 ms, echo time ¼ 3.1 ms, 1.1 (FH)� 1.1 (AP)� 1.2 (RL) mm
voxel resolution, FOV ¼ 270 (FH) � 253 (AP), 244 � 244 acquisition
matrix, reconstructed as a 256 � 256 matrix, 170 sagittal slices of
1.2-mm thickness, acceleration factor of 2). Full descriptions of
ADNI MRI protocols are available at http://adni.loni.usc.edu/
methods/documents/mri-protocols/.

All image preprocessing was completed using FMRIB Software
Library (FSL) (www.fmrib.ox.ac.uk/fsl) (Jenkinson et al., 2012; Smith
et al., 2004). First, FSL BET (Smith, 2002) was run to remove the
skull and any nonbrain tissue from the structural T1 image scans.
Second, FSL FEAT was used to preprocess the functional image data.
This included deleting the first 4 volumes, motion correction using
MCFLIRT (Jenkinson et al., 2002), interleaved slice-timing correc-
tion, spatial smoothing with an 8-mm FWHM gaussian kernel,
high-pass temporal filtering with a cutoff of 100 seconds, MELODIC
ICA denoising, and registration to the MNI template. Registration to
high-resolution structural and standard space was performed using
FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001) and an
MNI152 standard-space T1-weighted 2-mm average structural
template image. Next, FSL FIX (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014) was used to automatically classify noise
ICA components from the data. In the first pass, the Standard.RData
training weight provided by the FIX program was used to classify
the components (see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX/
UserGuide). After the initial running of FIX, a random subset (n ¼
25) of the data was manually examined to verify if the components
were accurately labeled as signal or noise (e.g., motion, vascular, or
nonegray matter tissue signal). FIX was then rerun on the entire
sample using the newly hand-trained, classifier. In terms of motion,
there were no group differences in the signal intensity metric,
DVARS (Power et al., 2012, 2013), that was calculated from the
initial non-preprocessed time series data (p ¼ 0.92), nor were there
any group differences in head displacement along the 6 motion
parameter estimates generated from MCFLIRT (p’s > 0.19).

1.3.1. CONN toolbox
Following preprocessing, rs-fMRI data were processed using the

MATLAB-based, CONN toolbox (Whitfield-Gabrieli and Nieto-
Castanon, 2012), to calculate bivariate correlation matrices for each
individual scan using ROIs from the study by Spreng et al. (2013) and
replicated in the studybyGradyet al. (2016).Nodeswere represented
by spherical ROIs, with a 5-mm radius, centered on the aforemen-
tioned coordinates. Following the procedure used by Spreng et al.
(2013), the overlapping voxel situated in the left hemisphere be-
tween thedorsolateral prefrontal cortex and themiddle frontal gyrus
(BA 9) was removed before analysis. As it has been documented that
there is decreased signal in the left lateral frontal lobe of the ADNI
data set (see Jones et al., 2016), we examined the tSNR for each
participant’s ROIs. Two ROIs had a tSNR < 100 for 33% and 28% of
participants, respectively, and were approximately þ2.5 standard
deviation from the mean n per ROI for each group. These ROIs were
the left anterior temporal lobe (nMCI ¼ 30, nHOA ¼ 24) and the left
ventral medial prefrontal cortex (nMCI¼ 21, nHOA¼ 25). These 2 ROIs
were removed, leaving 41 ROIs for analysis.

We used CONN toolbox to calculate the between-ROI, r-to-z
Fisher-transformed, bivariate correlation matrices per participant
based on the standardized T1 and rs-fMRI data. Sources of noise
that were regressed out included 6 motion parameters (partic-
ipant.par files), 5 principal components analysis temporal compo-
nents from the cerebrospinal fluid and white matter masks
generated, as well as motion outliers detected by ArtRepair-based
motion scrubbing. ArtRepair outlier detection was set to 2 stan-
dard deviation from the z-normalized global mean signal and to
0.5 mm for the movement threshold. Linear detrending was per-
formed, and a band-pass filter of 0.01e0.1 Hz was applied to the
data following regression of confounding variables.

1.3.2. Behavioral partial least squares analyses
We used behavioral partial least squares (PLS), a multivariate

technique similar to principal components analysis (see Krishnan
et al., 2011; McIntosh et al., 1996, 2004, for an in-depth descrip-
tion of this method), to analyze the relationship between the
interregional connectivity matrices, cognitive status, age, and
diagnostic group. Behavioral PLS computes the maximum covari-
ance between brain and behavioral data (MMSE, age) by perform-
ing singular value decomposition (SVD) on the stacked condition-
wise matrix, (i.e., for each group, across participants, there will be
2 stacked submatrices representing the relationship between each
behavioral variable and the brain data). SVD evaluates brain-
behavioral patterns from the stacked data matrix in terms of
orthogonal singular vectors, known as saliences. Latent variables
(LVs) therefore represent the maximum covariance between linear
combinations of the original brain and behavior data matrices and
the computed saliences. The significance of each LV is determined
through permutation testing, and reliability is determined through
a bootstrap estimation of the standard errors for the brain saliences.

During permutation testing, the data matrix rows are rearranged
without replacement and SVD is repeated to identify LVs. By
completing this process n times, a probability value can be deter-
mined to assess how frequently the permutated singular values
surpass the original values. During bootstrap testing, sampling with
replacement andPLS is completed n times to determine the standard
error of the brain saliences. The salience is divided by the standard
error of the bootstrap, providing a bootstrap ratio (BSR). The BSR is
comparable to a Z score, and BSRs� 2 are considered reliable (Grady
et al., 2000; Krishnan et al., 2011). Because the analysis is computed
in a single analytic step, no corrections for multiple comparisons are
required (McIntosh et al., 2004). Significance was tested by
computing the result to a null distribution generated from 500 per-
mutations. In addition to the BSRs, the confidence intervals (CIs) for
the brain-behavior correlations were calculated using 500 bootstrap
samples, to determine reliable associations. Resulting brain-network
graphswere thresholdedat aBSRof�2andwere visualizedusing the
BrainNet Viewer (Xia et al., 2013).

2. Results

2.1. MMSE and age

Independent samples t-tests were performed to compare the 2
groups on MMSE score and age in years (see Table 1 for group
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Table 1
Mean (standard deviations) MMSE scores and age in years by group

Group n MMSE Age

MCI 91 27.99 (1.66) 71.96 (7.76)
HOA 71 28.90 (1.27) 74.10 (6.71)

Key: HOA, healthy older adult; MCI, mild cognitive impairment; MMSE,
MinieMental Status Examination.
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means). Levene’s test was used to assess for equality of variances. As
Levene’s test was significant for MMSE scores, F (1, 160) ¼ 8.90, p ¼
0.003, the t-test statistic was calculated using unpooled variances
and degrees of freedom were adjusted in SPSS using the Sat-
terthwaite correction. There was a significant group difference for
MMSE scores, t (159.95)¼�3.97, p< 0.001, d¼�0.63, such that the
MCI group had lower scores than the HOA group. The comparison
between groups for age did not reach statistical significance, t
(160) ¼ �1.85, p ¼ 0.07, d ¼ �0.29. To eliminate the possibility of
ceiling effects, simple t-tests were run on the variable MMSE score
against the value of 30 (i.e., the maximum score that can be ob-
tained) for each group and the combined sample. This was per-
formed to ensure that the behavioral PLS results should not be
attributable to ceiling effects of MMSE scores. There was a
Correlatio

HOA

Fig. 1. Non-symmetrical correlation matrix of thresholded resting state correlations by grou
network, red represents the dorsal attention network, and blue represents the default netw
fall above the diagonal. aINS, anterior insula; aIPL, anterior inferior parietal lobule; amPFC, m
anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsal medial pref
adults; IFG, inferior frontal gyrus; iPCS, inferior precentral sulcus; l-, left hemisphere; LV1, fir
impairment; MFG (BA 6), middle frontal gyrus, BA 6; MFG (BA 9), middle frontal gyrus BA 9; M
middle temporal motion complex; pCC, posterior cingulate cortex; PCu, precuneus; PFC, p
rostrolateral prefrontal cortex; SFG, superior frontal gyrus; SOG, superior occipital gyrus; SPL
significant difference from the value of 30 for the MCI group,
t (90) ¼ �11.58, p < 0.001, d ¼ �1.2, HOA group, t (70) ¼ �7.31,
p < 0.001, d ¼ �0.87, and the combined sample, t (161) ¼ �13.13,
p < 0.001, d ¼ �1.0.

2.2. Network analysis

First, we examined differences in the network architecture be-
tween groups. Fig. 1 displays r-to-z Fisher-transformed correlation
matrices by group. A PLS analysis using these matrices as inputs
failed to generate a significant group effect, LV1, p¼ 0.998. The heat
maps are similar across groups, with the mean of the difference
matrix (HOA�MCI) equal to�0.01 (min¼�0.13, max¼ 0.12) and a
correlation between matrices of r ¼ 0.96.

2.3. Network, age, and cognitive status analysis

Next, we assessed how the neurocognitive network architecture
varies as a function of age and cognitive status. The first significant
LV dissociated distinct patterns of intrinsic connectivity differences
between MCI and HOA groups (LV1, p ¼ 0.012, 36% covariance
explained; Fig. 2). In the HOA group, MMSE and age covaried
n Value

MCI

p. Networks affiliation is indicated by color: green represents the frontoparietal control
ork. Correlations for HOA fall below the diagonal, while correlations for the MCI group
edial prefrontal cortex; aTL, anterior temporal lobe; BSR, bootstrap ratio; daCC, dorsal

rontal cortex; FEF, frontal eye fields; HF, hippocampal formation; HOA, healthy older
st significant latent variable; LV2, second significant latent variable; MCI, mild cognitive
MSE, MinieMental Status Examination; msPFC, medial superior prefrontal cortex; MT,
refrontal cortex; pIPL, posterior inferior parietal lobule; r-, right hemisphere; rlPFC,
, superior parietal lobule; STS, superior temporal sulcus; TPJ, temporal parietal junction.



A

B C

D

Fig. 2. Symmetrical BSR matrix of brain-behavior covariances for LV1 (panel A) displaying thresholded BSR values for MMSE and age effects. The matrix is thresholded at �2 to 6.
Panel B displays the relationship between MMSE and age with brain connectivity by group. Confidence intervals are 95% BSRs. Panel C represents the positive BSR values from the
covariance matrix (A) between MMSE, age, group, and functional connectivity in brain space. Panel D represents the negative BSR values. Panels A, C, and D are color coded by
network: green represents the frontoparietal control network, red represents the dorsal attention network, and blue represents the default network. For panels C and D, within-
network connections are colored according to network affiliation, and between-network connections are colored gray. See Fig. 1 caption for abbreviations.
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together with a selective pattern of interhemispheric and inter-
network connectivity. In the MCI group, only MMSE was associated
with a pattern of connectivity that showed stronger global inte-
gration of the 3 networks. Bar graphs in Fig. 2 (panel B) describe the
average correlations between the graph and MMSE and age with
95% bootstrapped CIs. Reliable differences can be ascertained by
lack of overlap of the 95% bootstrapped CI. The anatomically con-
strained functional connectivity graphs for LV1 are presented
separately by positive (panel C) and negative (panel D) BSR values.

The brain-behavior correlations (panel B) indicate that within
the HOA group, those individuals who (1) have higher MMSE scores
and (2) are older show more internetwork and interhemispheric
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connections. This pattern was particularly evident across the right
FPCN and left DAN networks, and integrated nodes of the DN,
represented by the positive brain-score network (panel C). MCI
individuals show no relationship between the positive brain-score
network and age but show a negative correlation with MMSE. The
interregional connections that were positively correlated with
MMSE scores (and age) in HOAs were associated with lower MMSE
scores in the MCI group. Negative brain scores (panel D) were
associated with a network configuration showing a globalized
pattern of network degradation and dedifferentiation. For in-
dividuals with MCI, this loss of differentiated network connectivity
was positively associated with higher MMSE scores suggesting a
compensatory-like brain response within this group. In contrast,
this pattern was associated with worse MMSE scores and younger
ages in HOAs, clearly reflecting a maladaptive functional architec-
ture for these participants.

A second significant LV emerged from this analysis (LV2, p ¼
0.028, 26% covariance explained; Fig. 3). The brain-behavior cor-
relation pattern (panel B) shows that for both groups, those in-
dividuals who have higher MMSE scores tended to have greater DN
functional connectivity, centered around a precuneus hub, and
greater DN cross-network integration with the FPCN, represented
by the positive brain-score network (panel C). Greater DN func-
tional connectivity appears to benefit cognition for both groups
after accounting for group-specific network patterns identified in
LV1. HOA individuals show no relationship between brain-scores
and age as the CI overlaps zero. MCI individuals display a negative
correlation with age, such that individuals who are older show less
within-network and more irregular patterns of network functional
connectivity (panel D).

2.4. Within-group analyses

To decompose the multivariate interaction of age, MMSE, and
group, we conducted 4 additional exploratory analyses. We first
present the results of the within-group analyses (see Fig. 4). For
each comparison, which again used age and MMSE as covariates of
resting-state functional connectivity, only the first LV was retained,
as latter LVs were not significant. The within-group analysis for
HOAs was significant, p ¼ 0.02, 64% covariance explained, and
largely replicated the pattern seen in the first LV of the between-
group analysis. The correlation between the BSR matrix of the
first LV for the HOA group and the first LV of the between-group
analysis was 0.98. Conversely, the BSR matrix of the first LV for
the HOA group did not correlate strongly with the second LV of the
grouped analysis, r ¼ 0.16.

Next, we examined the pattern of functional connectivity with
age and MMSE in the MCI group. The first LV approached the
threshold for significance, p ¼ 0.06, 60% covariance explained. The
BSR matrix for the first LV representing the MCI group correlated
most strongly with the second LV of the original between-group
analysis, r ¼ 0.95, and was weakly correlated with the first LV of
the between-group analysis, r¼ 0.21. The above analyses nowallow
us to reconceptualize our understanding of the original between-
group analysis. The first LV predominantly represents healthy ag-
ing, whereas the second LV predominantly represents abnormal
aging, or MCI. We next analyzed the effects of age and MMSE in
separate analyses, but as neither reached significance, both p values
> 0.09, these findings are not considered further.

2.5. Additional memory measures

Finally, to address whether these results were potentially biased
by our choice of the MMSE, which may have been considered as
part of the diagnostic tools used to identify patients with MCI, we
replaced MMSE scores with 2 independent measures of memory
(immediate and delayed memory recall from the Logical Memory
test of the Wechsler Memory Scale-Revised, Wechsler, 1945), in a
subgroup of the original sample (MCI, N ¼ 81; HOA, N ¼ 64). Both
analyses reproduce the findings of the original between-group
analysis using MMSE (see Supplementary Fig. 1). This suggests
that the main results did not depend on the MMSE as a cognitive
measure.

3. Discussion

We investigated the integrity and interactivity of the DN, FPCN,
and DAN, and associations with cognitive functioning, in healthy
aging and MCI. Although the topology of each network was
generally preserved across groups (see Fig. 1; Grady et al., 2016;
Spreng et al., 2013), group differences began to emerge once the
impact of age and cognition was considered. Specifically, greater
interactivity (1) between brain networks and (2) across hemi-
spheres was associated with better cognitive performance in HOAs.
Moreover, this association was stronger with increasing age in this
group, suggesting an age-related, compensatory-like pattern of
network dedifferentiation (Grady et al., 2016). Critically, however,
this same pattern of network dedifferentiation was associated with
worse cognition in MCI, irrespective of age. This suggests that for
individuals who develop MCI, there may be an inflection point,
where intrinsic network dedifferentiation may no longer follow a
compensatory-like pattern, resulting in the emergence of subjec-
tive and objective cognitive decline and MCI.

Higher cognitive performance has been associated with less
reconfiguration of brain networks between task and rest states in
younger (Schultz and Cole, 2016) and older (Grady et al., 2016)
adults. This latter study observed age-related increases in network
reconfiguration specifically within the FPCN and the DN. Although
we do not include task data here, HOAs do show greater network
connectivity at rest. Compared to the MCI group, HOAs maintain
more connections within network (see Fig. 2) as well as engaging
more between-network and cross-hemisphere connections,
possibly reflecting compensatory-like processes. Given these more
distinct network connectivity patterns, the HOA results here appear
more similar to the younger adult patterns in these earlier studies
than to the more dedifferentiated patterns observed for our MCI
group. However, rest-to-task interactions remain an area of future
investigation in early AD.

Our primary analysis integrated network connectivity, cogni-
tion, age, and diagnostic status within a single multivariate model.
This allowed us not only to interrogate changes in brain network
dynamics between groups but also to explore how these network
changes differentially related to cognitive capacity in normal aging
and MCI. For HOAs, age and cognitive status (MMSE) were posi-
tively associated with stronger within- and between-network
connections across hemispheres (see Fig. 2, panel C). This sug-
gests that normal cognitive aging may reflect compensatory reor-
ganization of intrinsic functional networks involving greater
network interactions. This finding is consistent with a recent report
showing greater FPCN interactivity with the DAN and DN was
associated with better memory performance (Grady et al., 2016).
Furthermore, this compensation-based interpretation is consistent
with models of neurocognitive aging suggesting that increased
recruitment of anterior brain regions (Davis et al., 2008) and less-
lateralized patterns of functional brain response (Cabeza, 2002)
are associated with better cognitive performance. Posterior regions
of the DN are among the most susceptible to neuropathological
changes in AD, often showing the earliest structural and functional
brain changes (Andrews-Hanna et al., 2014; Buckner, 2004;
Damoiseaux, 2017). Here, the precuneus and the posterior
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Fig. 3. Symmetrical BSR matrix of brain-behavior covariances for LV2 (panel A) displaying thresholded BSR values for MMSE and age effects. The matrix is thresholded at �2 to 6.
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network connections are colored according to network affiliation, and between-network connections are colored gray. See Fig. 1 caption for abbreviations.
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cingulate, 2 posterior DN hub regions, were still fully integrated
within the DN. The relative preservation of the DN along with
greater between-network and hemispheric integration may sup-
port cognitive functioning in typical aging.
In contrast, this pattern of intrinsic functional connectivity ap-
pears to be insufficient to support cognitive functioning for in-
dividuals with MCI. Rather than these more circumscribed changes,
cognitive performance inMCI was positively associatedwith amore
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generalized, spatially distributed pattern of intrinsic connectivity
(see Fig. 2, panel D). This pattern encompassed nearly all of the ROIs
included in our 3-network model and possibly reflects greater
dedifferentiation and less specificity of brain function, a pattern
that is commonly observed in older adulthood (Park et al., 2001).
Whether this pattern reflects maladaptive compensatory process-
ing in older adults continues to be an area of active debate (Grady,
2012; Spreng and Turner, in press). Our results suggest a more
complex interaction. Although HOAs demonstrated a selective
strengthening within a circumscribed set of cross-network con-
nections to bolster performance, participants with MCI showed
nonselective and more spatially distributed intrinsic functional
connectivity changes that were associated with better cognitive
functioning. We note, however, that this result for the participants
with MCI from the between-group analysis should be interpreted
cautiously due to the correlations from the within-group analyses
that are described below.

The second network pattern associated with age and cognitive
status identified a pattern of modular connections (greater within-
and reduced between-network connectivity) that predict higher
MMSE scores in HOAs regardless of age (see Fig. 3). As with the
relationship between the first network pattern and the MCI group,
this between-group analysis result for the HOAs also must be
considered carefully in light of the results from the within-group
analyses. The DN forms a distinct cluster with the precuneus as a
centralized hub, as does the FPCN with the right middle frontal
gyrus (BA 6). This positive association between a more young-like
pattern of intrinsic functional connectivity and better cognitive
performance in later life is consistent with previous research
(Geerligs et al., 2015). In contrast, only younger individuals with
MCI were able to maintain this more modular and compensatory-
like organization. Modular functional brain organization declines
with increasing age as within-module connections weaken, and
regions become disconnected (Meunier et al., 2009), and normal
aging has been shown to be associated with reductions in modu-
larity and small worldness (Onoda and Yamaguchi, 2013). Consis-
tent with our findings, further declines in local connectivity and
modularity are observed with atypical aging and AD in relation to
healthy controls (Brier et al., 2014; Supekar et al., 2008).

As a follow-up to our main analysis, we also examined each
group separately. The first significant pattern of the between-group
analysis, reflecting greater interactivity between brain networks
and across hemispheres, correlated strongly with the within-group
HOA results (Fig. 4). In contrast, the second significant pattern of the
between-group analysis, reflecting changes within the DN, was
more closely aligned to the within-group MCI results. This suggests
that HOAs actively may recruit additional regions to support
cognition, consistent with compensatory models such as the Pos-
terior to Anterior Shift with Aging (PASA; Davis et al., 2008) and the
Hemispheric Asymmetry Reduction in Older adults (HAROLD). In
contrast, the pattern describing the MCI group suggests that to the
extent these participants are able to preserve network integrity
within the DN specifically, cognition is better preserved (e.g.,
Staffaroni et al., 2018).

To ensure that the functional connectivity network patterns
derived were not specifically attributable to our selection of the
MMSE as our cognitive measure (potentially biasing the findings as
MMSE could have conceivably influenced determination of diag-
nostic status), we reproduced the main analyses using (1) imme-
diate as well as (2) delayed memory scores and age. As shown in
Supplementary Fig. 1, the primary between-group pattern of re-
sults from the main analysis was replicated for both immediate
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memory and age, and for delayed memory and age. These addi-
tional analyses suggest that the effects we describe in the main
analysis are stable and not driven our choice of the MMSE.

Previous functional connectivity studies of aging and dementia
have focused primarily on changes within the DN (see Hafkemeijer
et al., 2012; Damoiseaux, 2017 for a review). Our results suggest
that the shifting interactivity of the DN with other large-scale brain
networks in aging and brain disease may be equally important for
understanding and mapping the functional network architecture of
the brain to cognition in later life. The multivariate approach
adopted here allowed us to investigate this possibility directly by
modeling functional connections among all network nodes, as well
as associations with cognition and age, across diagnostic groups
within a single analytical model. In doing so, we identified func-
tional connectivity differences between healthy aging older adults
relative to those with MCI and determined that these differences
vary by age and cognitive status. Specifically, the findings demon-
strate that investigating changes in the DN in isolation cannot fully
capture these differences. It is rather the dynamics of DN in-
teractionswith other large-scale brain systems that are necessary to
fully elucidate the differences between healthy aging and MCI. Our
results are consistent with the cascading model of functional
network decline in AD (Jones et al., 2016). Early within-network
changes of the DN precipitate later functional reorganization of
large-scale systems, with declining compensatory gains as the
disease progresses. Future work is necessary to better define the
period in the disease course when these network changes transi-
tion from an indicator of resilience to a signal of more rapid
cognitive decline.
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